Package: BayesianPower 0.2.3

BayesianPower: Sample Size and Power for Comparing Inequality Constrained Hypotheses

A collection of methods to determine the required sample size for the evaluation of inequality constrained hypotheses by means of a Bayes factor. Alternatively, for a given sample size, the unconditional error probabilities or the expected conditional error probabilities can be determined. Additional material on the methods in this package is available in Klaassen, F., Hoijtink, H. & Gu, X. (2019) <doi:10.31219/osf.io/d5kf3>.

Authors:Fayette Klaassen

BayesianPower_0.2.3.tar.gz
BayesianPower_0.2.3.zip(r-4.5)BayesianPower_0.2.3.zip(r-4.4)BayesianPower_0.2.3.zip(r-4.3)
BayesianPower_0.2.3.tgz(r-4.4-any)BayesianPower_0.2.3.tgz(r-4.3-any)
BayesianPower_0.2.3.tar.gz(r-4.5-noble)BayesianPower_0.2.3.tar.gz(r-4.4-noble)
BayesianPower_0.2.3.tgz(r-4.4-emscripten)BayesianPower_0.2.3.tgz(r-4.3-emscripten)
BayesianPower.pdf |BayesianPower.html
BayesianPower/json (API)
NEWS

# Install 'BayesianPower' in R:
install.packages('BayesianPower', repos = c('https://fayetteklaassen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/fayetteklaassen/bayesianpower/issues

On CRAN:

3.70 score 2 scripts 224 downloads 2 exports 0 dependencies

Last updated 4 years agofrom:13d2f1711b. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winOKNov 01 2024
R-4.5-linuxOKNov 01 2024
R-4.4-winOKNov 01 2024
R-4.4-macOKNov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:bayes_powerbayes_sampsize

Dependencies:

BayesianPower

Rendered frombayesianpower.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2020-06-16
Started: 2019-05-21