Package: BayesianPower 0.2.3

BayesianPower: Sample Size and Power for Comparing Inequality Constrained Hypotheses

A collection of methods to determine the required sample size for the evaluation of inequality constrained hypotheses by means of a Bayes factor. Alternatively, for a given sample size, the unconditional error probabilities or the expected conditional error probabilities can be determined. Additional material on the methods in this package is available in Klaassen, F., Hoijtink, H. & Gu, X. (2019) <doi:10.31219/osf.io/d5kf3>.

Authors:Fayette Klaassen

BayesianPower_0.2.3.tar.gz
BayesianPower_0.2.3.zip(r-4.5)BayesianPower_0.2.3.zip(r-4.4)BayesianPower_0.2.3.zip(r-4.3)
BayesianPower_0.2.3.tgz(r-4.5-any)BayesianPower_0.2.3.tgz(r-4.4-any)BayesianPower_0.2.3.tgz(r-4.3-any)
BayesianPower_0.2.3.tar.gz(r-4.5-noble)BayesianPower_0.2.3.tar.gz(r-4.4-noble)
BayesianPower_0.2.3.tgz(r-4.4-emscripten)BayesianPower_0.2.3.tgz(r-4.3-emscripten)
BayesianPower.pdf |BayesianPower.html
BayesianPower/json (API)
NEWS

# Install 'BayesianPower' in R:
install.packages('BayesianPower', repos = c('https://fayetteklaassen.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/fayetteklaassen/bayesianpower/issues

On CRAN:

Conda-Forge:

3.70 score 2 scripts 321 downloads 2 exports 0 dependencies

Last updated 5 years agofrom:13d2f1711b. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 06 2025
R-4.5-winOKMar 06 2025
R-4.5-macOKMar 06 2025
R-4.5-linuxOKMar 06 2025
R-4.4-winOKMar 06 2025
R-4.4-macOKMar 06 2025
R-4.4-linuxOKMar 06 2025
R-4.3-winOKMar 06 2025
R-4.3-macOKMar 06 2025

Exports:bayes_powerbayes_sampsize

Dependencies:

BayesianPower

Rendered frombayesianpower.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2020-06-16
Started: 2019-05-21