Package: BayesianPower 0.2.3
BayesianPower: Sample Size and Power for Comparing Inequality Constrained Hypotheses
A collection of methods to determine the required sample size for the evaluation of inequality constrained hypotheses by means of a Bayes factor. Alternatively, for a given sample size, the unconditional error probabilities or the expected conditional error probabilities can be determined. Additional material on the methods in this package is available in Klaassen, F., Hoijtink, H. & Gu, X. (2019) <doi:10.31219/osf.io/d5kf3>.
Authors:
BayesianPower_0.2.3.tar.gz
BayesianPower_0.2.3.zip(r-4.5)BayesianPower_0.2.3.zip(r-4.4)BayesianPower_0.2.3.zip(r-4.3)
BayesianPower_0.2.3.tgz(r-4.4-any)BayesianPower_0.2.3.tgz(r-4.3-any)
BayesianPower_0.2.3.tar.gz(r-4.5-noble)BayesianPower_0.2.3.tar.gz(r-4.4-noble)
BayesianPower_0.2.3.tgz(r-4.4-emscripten)BayesianPower_0.2.3.tgz(r-4.3-emscripten)
BayesianPower.pdf |BayesianPower.html✨
BayesianPower/json (API)
NEWS
# Install 'BayesianPower' in R: |
install.packages('BayesianPower', repos = c('https://fayetteklaassen.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/fayetteklaassen/bayesianpower/issues
Last updated 4 years agofrom:13d2f1711b. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win | OK | Nov 01 2024 |
R-4.5-linux | OK | Nov 01 2024 |
R-4.4-win | OK | Nov 01 2024 |
R-4.4-mac | OK | Nov 01 2024 |
R-4.3-win | OK | Nov 01 2024 |
R-4.3-mac | OK | Nov 01 2024 |
Exports:bayes_powerbayes_sampsize
Dependencies: